GNPs-CS/KGM as Hemostatic First Aid Wound Dressing with Antibiotic Effect: In Vitro and In Vivo Study

نویسندگان

  • Li Fan
  • Chong Cheng
  • Youbei Qiao
  • Fei Li
  • Wei Li
  • Hong Wu
  • Bo Ren
چکیده

Ideal wound dressing materials should create a good healing environment, with immediate hemostatic effects and antimicrobial activity. In this study, chitosan/konjac glucomannan (CS/KGM) films embedded with gentamicin-loaded poly(dex-GMA/AAc) nanoparticles (giving GNP-CS/KGM films) were prepared as novel wound dressings. The results revealed that the modified CS/KGM films could be used as effective wound dressings and had significant hemostatic effects. With their microporous structure, the films could effectively absorb water from blood and trap blood cells. The gentamicinloaded poly(dex-GMA/AAc) nanoparticles (GNPs) also further promoted blood clotting, with their favorable water uptake capacity. Thus, the GNP-CS/KGM films had wound healing and synergistic effects that helped to stop bleeding from injuries, and also showed good antibiotic abilities by addition of gentamicin to the NPs. These GNPCS/KGM films can be considered as promising novel biodegradable and biocompatible wound dressings with hemostatic capabilities and antibiotic effects for treatment of external bleeding injuries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and characterization of CS/ PEO/ cefazolin nanofibers with in vitro and in vivo testing

Objective(S): Electrospinning of chitosan/polyethylene oxide (CS/PEO) nanofibers with the addition of cefazolin to create nanofibers with antimicrobial properties were examined. Methods: Polymeric nanofibers including CS/PEO and CS/PEO /cefazolin, were produced by electrospinning method. The range of nanofiber was 60-100 nm in diameter and measured with I...

متن کامل

In vitro evaluation of nickel oxide-based nanocomposite as wound dressing material against the bacterium isolated from burns

The introduction of newly devised wound dressing has been a major breakthrough in the management of wounds or infections. The aims of this paper are to isolate and identify bacterial species causing burn wound infections from a University-related Iranian hospital as well as determination of the antimicrobial susceptibility of the isolated microorganisms to newly devised nanocomposite materials ...

متن کامل

هیدروژل فیزیکی کیتوسان جهت درمان زخم دیابتی

Introduction: Diabetes is one of the most common chronic diseases. Diabetes mellitus is a metabolic disorder in the metabolism of fats, carbohydrates and proteins in the body which were caused by the changes in insulin secretion in the body. Diabetes is malfunctioning in the body’s vessels. This research aimed to develop a wound dressing that causes the damaged vessels to be reconstructed and i...

متن کامل

Chitosan-based nano-scaffolds as antileishmanial wound dressing in BALB/c mice treatment: Characterization and design of tissue regeneration

Objective(s): Rapid healing of cutaneous leishmaniasis as one of the most important parasitic diseases leads to the decrease of scars and prevention of a great threat to the looks of the affected people. Today, the use of nano-scaffolds is rapidly increasing in tissue engineering and regenerative medicine with structures similar to the target tissue. Chitosan (CS) is a...

متن کامل

The evaluation of resorbable haemostatic wound dressings in contact with blood in vitro.

PURPOSE For many years research has been conducted on the development of resorbable, polymer, haemostatic materials designed to provide first aid and preliminary protection of injuries. The biological properties in vitro of a dressing in powder form called Hemoguard are expected to provide the ability to instantaneously stem bleeding with safe conditions of use. The aim of the study was to eval...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013